3.1179 \(\int \frac{B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=111 \[ \frac{2 B \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 d}+\frac{2 B \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}-\frac{6 C E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 C \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{6 C \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}} \]

[Out]

(-6*C*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*B*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*C*Sin[c + d*x])/(5*d*Cos[c
 + d*x]^(5/2)) + (2*B*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + (6*C*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0936062, antiderivative size = 111, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {4064, 2748, 2636, 2639, 2641} \[ \frac{2 B F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 B \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}-\frac{6 C E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 C \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{6 C \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Cos[c + d*x]^(3/2),x]

[Out]

(-6*C*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*B*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*C*Sin[c + d*x])/(5*d*Cos[c
 + d*x]^(5/2)) + (2*B*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + (6*C*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d*x]])

Rule 4064

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(m_)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.)*(x_)
]^2), x_Symbol] :> Dist[b^2, Int[(b*Cos[e + f*x])^(m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; F
reeQ[{b, e, f, A, B, C, m}, x] &&  !IntegerQ[m]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac{3}{2}}(c+d x)} \, dx &=\int \frac{C+B \cos (c+d x)}{\cos ^{\frac{7}{2}}(c+d x)} \, dx\\ &=B \int \frac{1}{\cos ^{\frac{5}{2}}(c+d x)} \, dx+C \int \frac{1}{\cos ^{\frac{7}{2}}(c+d x)} \, dx\\ &=\frac{2 C \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{2 B \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{1}{3} B \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx+\frac{1}{5} (3 C) \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 B F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 C \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{2 B \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{6 C \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}-\frac{1}{5} (3 C) \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{6 C E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 B F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 C \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{2 B \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{6 C \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.301493, size = 95, normalized size = 0.86 \[ \frac{10 B \cos ^{\frac{3}{2}}(c+d x) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )+10 B \sin (c+d x)+9 C \sin (2 (c+d x))+6 C \tan (c+d x)-18 C \cos ^{\frac{3}{2}}(c+d x) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{15 d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Cos[c + d*x]^(3/2),x]

[Out]

(-18*C*Cos[c + d*x]^(3/2)*EllipticE[(c + d*x)/2, 2] + 10*B*Cos[c + d*x]^(3/2)*EllipticF[(c + d*x)/2, 2] + 10*B
*Sin[c + d*x] + 9*C*Sin[2*(c + d*x)] + 6*C*Tan[c + d*x])/(15*d*Cos[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [B]  time = 5.675, size = 502, normalized size = 4.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*B*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c
)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+
1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))-
2/5*C/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(12*(2*si
n(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2
*c)^4-24*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2
*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+3*(2
*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)-8*sin(1/2*d*
x+1/2*c)^2*cos(1/2*d*x+1/2*c))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2))/sin(1/2*d*x+1/2*c)/(2*cos
(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )}{\cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )}{\cos \left (d x + c\right )^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^2 + B*sec(d*x + c))/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (B + C \sec{\left (c + d x \right )}\right ) \sec{\left (c + d x \right )}}{\cos ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)**2)/cos(d*x+c)**(3/2),x)

[Out]

Integral((B + C*sec(c + d*x))*sec(c + d*x)/cos(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )}{\cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/cos(d*x + c)^(3/2), x)